Line data Source code
1 : #include "tommath_private.h"
2 : #ifdef BN_MP_EXPTMOD_C
3 : /* LibTomMath, multiple-precision integer library -- Tom St Denis */
4 : /* SPDX-License-Identifier: Unlicense */
5 :
6 : /* this is a shell function that calls either the normal or Montgomery
7 : * exptmod functions. Originally the call to the montgomery code was
8 : * embedded in the normal function but that wasted alot of stack space
9 : * for nothing (since 99% of the time the Montgomery code would be called)
10 : */
11 229 : mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
12 : {
13 : int dr;
14 :
15 : /* modulus P must be positive */
16 229 : if (P->sign == MP_NEG) {
17 0 : return MP_VAL;
18 : }
19 :
20 : /* if exponent X is negative we have to recurse */
21 229 : if (X->sign == MP_NEG) {
22 : mp_int tmpG, tmpX;
23 : mp_err err;
24 :
25 : if (!MP_HAS(MP_INVMOD)) {
26 : return MP_VAL;
27 : }
28 :
29 0 : if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) {
30 0 : return err;
31 : }
32 :
33 : /* first compute 1/G mod P */
34 0 : if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
35 0 : goto LBL_ERR;
36 : }
37 :
38 : /* now get |X| */
39 0 : if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
40 0 : goto LBL_ERR;
41 : }
42 :
43 : /* and now compute (1/G)**|X| instead of G**X [X < 0] */
44 0 : err = mp_exptmod(&tmpG, &tmpX, P, Y);
45 0 : LBL_ERR:
46 0 : mp_clear_multi(&tmpG, &tmpX, NULL);
47 0 : return err;
48 : }
49 :
50 : /* modified diminished radix reduction */
51 229 : if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) &&
52 229 : (mp_reduce_is_2k_l(P) == MP_YES)) {
53 0 : return s_mp_exptmod(G, X, P, Y, 1);
54 : }
55 :
56 : /* is it a DR modulus? default to no */
57 229 : dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0;
58 :
59 : /* if not, is it a unrestricted DR modulus? */
60 229 : if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) {
61 229 : dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0;
62 : }
63 :
64 : /* if the modulus is odd or dr != 0 use the montgomery method */
65 229 : if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) {
66 229 : return s_mp_exptmod_fast(G, X, P, Y, dr);
67 : } else if (MP_HAS(S_MP_EXPTMOD)) {
68 : /* otherwise use the generic Barrett reduction technique */
69 0 : return s_mp_exptmod(G, X, P, Y, 0);
70 : } else {
71 : /* no exptmod for evens */
72 : return MP_VAL;
73 : }
74 : }
75 :
76 : #endif
|