Line data Source code
1 : #include "tommath_private.h"
2 : #ifdef BN_S_MP_EXPTMOD_C
3 : /* LibTomMath, multiple-precision integer library -- Tom St Denis */
4 : /* SPDX-License-Identifier: Unlicense */
5 :
6 : #ifdef MP_LOW_MEM
7 : # define TAB_SIZE 32
8 : # define MAX_WINSIZE 5
9 : #else
10 : # define TAB_SIZE 256
11 : # define MAX_WINSIZE 0
12 : #endif
13 :
14 0 : mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
15 : {
16 : mp_int M[TAB_SIZE], res, mu;
17 : mp_digit buf;
18 : mp_err err;
19 : int bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
20 : mp_err(*redux)(mp_int *x, const mp_int *m, const mp_int *mu);
21 :
22 : /* find window size */
23 0 : x = mp_count_bits(X);
24 0 : if (x <= 7) {
25 0 : winsize = 2;
26 0 : } else if (x <= 36) {
27 0 : winsize = 3;
28 0 : } else if (x <= 140) {
29 0 : winsize = 4;
30 0 : } else if (x <= 450) {
31 0 : winsize = 5;
32 0 : } else if (x <= 1303) {
33 0 : winsize = 6;
34 0 : } else if (x <= 3529) {
35 0 : winsize = 7;
36 : } else {
37 0 : winsize = 8;
38 : }
39 :
40 0 : winsize = MAX_WINSIZE ? MP_MIN(MAX_WINSIZE, winsize) : winsize;
41 :
42 : /* init M array */
43 : /* init first cell */
44 0 : if ((err = mp_init(&M[1])) != MP_OKAY) {
45 0 : return err;
46 : }
47 :
48 : /* now init the second half of the array */
49 0 : for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
50 0 : if ((err = mp_init(&M[x])) != MP_OKAY) {
51 0 : for (y = 1<<(winsize-1); y < x; y++) {
52 0 : mp_clear(&M[y]);
53 : }
54 0 : mp_clear(&M[1]);
55 0 : return err;
56 : }
57 : }
58 :
59 : /* create mu, used for Barrett reduction */
60 0 : if ((err = mp_init(&mu)) != MP_OKAY) goto LBL_M;
61 :
62 0 : if (redmode == 0) {
63 0 : if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) goto LBL_MU;
64 0 : redux = mp_reduce;
65 : } else {
66 0 : if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) goto LBL_MU;
67 0 : redux = mp_reduce_2k_l;
68 : }
69 :
70 : /* create M table
71 : *
72 : * The M table contains powers of the base,
73 : * e.g. M[x] = G**x mod P
74 : *
75 : * The first half of the table is not
76 : * computed though accept for M[0] and M[1]
77 : */
78 0 : if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) goto LBL_MU;
79 :
80 : /* compute the value at M[1<<(winsize-1)] by squaring
81 : * M[1] (winsize-1) times
82 : */
83 0 : if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_MU;
84 :
85 0 : for (x = 0; x < (winsize - 1); x++) {
86 : /* square it */
87 0 : if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)],
88 0 : &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_MU;
89 :
90 : /* reduce modulo P */
91 0 : if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, &mu)) != MP_OKAY) goto LBL_MU;
92 : }
93 :
94 : /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
95 : * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
96 : */
97 0 : for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
98 0 : if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) goto LBL_MU;
99 0 : if ((err = redux(&M[x], P, &mu)) != MP_OKAY) goto LBL_MU;
100 : }
101 :
102 : /* setup result */
103 0 : if ((err = mp_init(&res)) != MP_OKAY) goto LBL_MU;
104 0 : mp_set(&res, 1uL);
105 :
106 : /* set initial mode and bit cnt */
107 0 : mode = 0;
108 0 : bitcnt = 1;
109 0 : buf = 0;
110 0 : digidx = X->used - 1;
111 0 : bitcpy = 0;
112 0 : bitbuf = 0;
113 :
114 : for (;;) {
115 : /* grab next digit as required */
116 0 : if (--bitcnt == 0) {
117 : /* if digidx == -1 we are out of digits */
118 0 : if (digidx == -1) {
119 0 : break;
120 : }
121 : /* read next digit and reset the bitcnt */
122 0 : buf = X->dp[digidx--];
123 0 : bitcnt = (int)MP_DIGIT_BIT;
124 : }
125 :
126 : /* grab the next msb from the exponent */
127 0 : y = (buf >> (mp_digit)(MP_DIGIT_BIT - 1)) & 1uL;
128 0 : buf <<= (mp_digit)1;
129 :
130 : /* if the bit is zero and mode == 0 then we ignore it
131 : * These represent the leading zero bits before the first 1 bit
132 : * in the exponent. Technically this opt is not required but it
133 : * does lower the # of trivial squaring/reductions used
134 : */
135 0 : if ((mode == 0) && (y == 0)) {
136 0 : continue;
137 : }
138 :
139 : /* if the bit is zero and mode == 1 then we square */
140 0 : if ((mode == 1) && (y == 0)) {
141 0 : if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES;
142 0 : if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
143 0 : continue;
144 : }
145 :
146 : /* else we add it to the window */
147 0 : bitbuf |= (y << (winsize - ++bitcpy));
148 0 : mode = 2;
149 :
150 0 : if (bitcpy == winsize) {
151 : /* ok window is filled so square as required and multiply */
152 : /* square first */
153 0 : for (x = 0; x < winsize; x++) {
154 0 : if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES;
155 0 : if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
156 : }
157 :
158 : /* then multiply */
159 0 : if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) goto LBL_RES;
160 0 : if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
161 :
162 : /* empty window and reset */
163 0 : bitcpy = 0;
164 0 : bitbuf = 0;
165 0 : mode = 1;
166 : }
167 : }
168 :
169 : /* if bits remain then square/multiply */
170 0 : if ((mode == 2) && (bitcpy > 0)) {
171 : /* square then multiply if the bit is set */
172 0 : for (x = 0; x < bitcpy; x++) {
173 0 : if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES;
174 0 : if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
175 :
176 0 : bitbuf <<= 1;
177 0 : if ((bitbuf & (1 << winsize)) != 0) {
178 : /* then multiply */
179 0 : if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) goto LBL_RES;
180 0 : if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
181 : }
182 : }
183 : }
184 :
185 0 : mp_exch(&res, Y);
186 0 : err = MP_OKAY;
187 0 : LBL_RES:
188 0 : mp_clear(&res);
189 0 : LBL_MU:
190 0 : mp_clear(&mu);
191 0 : LBL_M:
192 0 : mp_clear(&M[1]);
193 0 : for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
194 0 : mp_clear(&M[x]);
195 : }
196 0 : return err;
197 : }
198 : #endif
|